Stability of networked control systems with variable sampling and delay

نویسندگان

  • Payam Naghshtabrizi
  • Joao P. Hespanha
چکیده

We consider Networked Control Systems (NCSs) consisting of a LTI plant; a linear static or dynamic feedback controller; a collection of sensors that provide measurements to the controller; and a collection of actuators that are used to control the plant. The different elements of the control system are spatially distributed, but interconnected through a communication network. Due to the shared and unreliable channel used to connect the subsystems, the sampling intervals are uncertain and variable. Moreover, samples may be dropped and experience uncertain and variable delays before arriving at the destination. We show that the resulting NCSs can be viewed as a MIMO sampled-data system with variable sampling intervals and delay, which can be modeled by linear infinitedimensional impulsive systems. The infinite dimensionality of the system arises from the existence of delays. We provide conditions for the stability of the closed-loop expressed in terms of LMIs. By solving these LMIs, one can determine positive constants related to each entity sent through the network that determines an upper bound between the sampling time and the next update time at the destination of that entity, for which stability of the closed-loop system is guaranteed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling and Compensation of uncertain time-delays in networked control systems with plant uncertainty using an Improved RMPC Method

Control systems with digital communication between sensors, controllers and actuators are called as Networked Control Systems (NCSs). In general, NCSs encounter with some problems such as packet dropouts and network induced delays. When plant uncertainty is added to the aforementioned problems, the design of the robust controller that is able to guarantee the stability, becomes more complex. In...

متن کامل

Stabilization of Networked Control Systems with Variable Delays and Saturating Inputs

In this paper, improved conditions for the synthesis of static state-feedback controller are derived to stabilize networked control systems (NCSs) subject to actuator saturation. Both of the data packet latency and dropout which deteriorate the performance of the closed-loop system are considered in the NCS model via variable delays. Two different techniques are employed to incorporate actuator...

متن کامل

Markovian Delay Prediction-Based Control of Networked Systems

A new Markov-based method for real time prediction of network transmission time delays is introduced. The method considers a Multi-Layer Perceptron (MLP) neural model for the transmission network, where the number of neurons in the input layer is minimized so that the required calculations are reduced and the method can be implemented in the real-time. For this purpose, the Markov process order...

متن کامل

Time Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter

In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...

متن کامل

Development of RMPC Algorithm for Compensation of Uncertain Time-Delay and Disturbance in NCS

In this paper‎, ‎a synthesis method based on robust model predictive control is developed for compensation of uncertain time-delays in networked control systems with bounded disturbance‎. ‎The proposed method uses linear matrix inequalities and uncertainty polytope to model uncertain time-delays and system disturbances‎. ‎The continuous system with time-delay is discretized using uncertainty po...

متن کامل

Identification and Control of MIMO Systems with State Time Delay (Short Communication)

Time-delay identification is one of the most important parameters in designing controllers. In the cases where the number of inputs and outputs in a system are more than one, this identification is of great concern. In this paper, a novel autocorrelation-based scheme for the state variable time-delay identification for multi-input multi-output (MIMO) system has been presented. This method is ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006